edited books |
|
journal articles in preparation |
|
journal articles |
-
M. Vacca, K. P. Tripathi, L. Speranza, R. A. Cigliano, F. Scalabrì, F. Marracino, M. Madonna, W. Sanseverino, C. Perrone Capano, M. R. Guarracino and Maurizio D’Esposito.
Effects of Mecp2 loss of function in embryonic cortical neurons: a bioinformatics strategy to sort out non-neuronal cells variability from transcriptome profiling.
BMC Bioinformatics, 17 (2), 189, 2016.
-
-
-
-
C.M. Williams, M. Watanabe, M.R. Guarracino, M.B. Ferraro, A. Edison, T.J. Morgan, A.F.B. Boroujerdi, D.A. Hahn.
Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster.
Evolution, vol. 68, Issue 12, pages 3505–3523, 2014.
-
-
-
-
-
L. Brunese, B. Greco, F.R. Setola, F. Lassandro, M.R. Guarracino, M. De Rimini, S. Piccolo, N. De Rosa, R. Muto, A. Bianco, P. Muto, R. Grassi, and A. Rotondo. Non-small cell lung cancer evaluated with quantitative contrast-enhanced CT and PET-CT: net enhancement and standardized uptake values are related to tumour size and histology. Medical Science Monitor 2013 Feb 7;19:95-101.
-
-
-
-
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
S. Corsaro, P.L. De Angelis, M.R. Guarracino, Z. Marino, V. Monetti, F. Perla, P. Zanetti. Kremm: an E-learning System for Mathematical Models Applied to
Economics and Finance. Journal of e-Learning and Knowledge Society, Giunti, vol. 5, n. 1, pp. 221 - 230, 2009.
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
[Matlab macros]
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
|
book chapters |
-
Laura Casalino, Pasqua D'Ambra, Mario R. Guarracino, Antonio Irpino, Lucia Maddalena, Francesco Maiorano, Gabriella Minchiotti, and Eduardo Jorge Patriarca.
Image Analysis and Classification for High-Throughput Screening of Embryonic Stem Cellsi. In “Bringing Math to Life”, Springer, Pages 17-31, 2015.
-
-
M.B. Ferraro and M.R. Guarracino. From separating to proximal plane classifiers: a review. In "Clusters, orders, trees: methods and applications." Panos Pardalos, Boris Goldengorin, and Fuad Aleskerov editors, Springer Optimization and Its Applications series, Volume 92, Pages 167-180, 2014.
-
-
M.R. Guarracino, R. Jasinevicius, R. Krusinskiene, and V. Petrauskas. Fuzzy Hyperinference-Based Pattern Recognition. Towards Advanced Data Analysis by Combining Soft Computing and Statistics - Springer series on Studies in Fuzziness and Soft Computing Volume 285, Pages 223-240, 2013.
-
-
D. Tovar, E. Cornejo, P. Xanthopoulos, M.R. Guarracino and P.M. Pardalos.
Data Mining in Psychiatric Research.
Psychiatric Disorders: Methods and Protocols, Kobeissy, F. H. editor,
Springer series on Methods in Molecular Biology, vol. 829, ISBN 978-1-61779-457-5, Pages 593-604, 2012.
-
M.R. Guarracino, A. Nebbia, V. Manna, A. Chinchuluun, P. Pardalos. Protein-protein interactions prediction using Nearest Neighbor classification algorithm and feature selection. BIOMAT 2009, Rubem P. Mondaini editor, World Scientific, Pages 263-276, 2010.
[ Bibtex]
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
D. Abbate, M.R. Guarracino, A. Chinchuluun, P.M. Pardalos. Neural network classification with prior knowledge for analysis of biological data. BIOMAT 2008, Rubem P. Mondaini editor, World Scientific, ISBN:
978-981-4271-81-3, Pages 223 - 234,
2008.
[Bibtex]
-
G. Felici, P. Bertolazzi, M.R. Guarracino, A. Chinchuluun, P. Pardalos. Logic formulas based knowledge discovery and its application to the classification of biological data. BIOMAT 2008, Rubem P. Mondaini editor, World Scientific, ISBN: 978-981-4271-81-3, Pages 265 - 279, 2008.
[Bibtex]
-
[Bibtex]
-
- [Bibtex]
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
M. Bertero, P. Bonetto, L. Carracciuolo, L. D'Amore, A. Formiconi, M.R. Guarracino, G. Laccetti, A. Murli and G. Oliva. A Grid-Based RPC System for Medical Imaging, chapter of Parallel and Distributed Scientific and Engineering Computing: Practice and Experience, Y. Pan and L T. Yang editors, Nova Science Publishers, 2004, Pages 189-204.
[Bibtex]
|
conference proceedings |
-
P. G. Georgiev, P. Xanthopoulos, M.R. Guarracino, P.M. Pardalos
Subspace Classifiers submitted, 2010.
-
P.M. Pardalos and M.R. Guarracino.
Prior knowledge in supervised classification models.
IJCCI (ICFC-ICNC) 2010, pp. 13-15, 2010.
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
D. Abbate, R. De Asmundis, and M.R. Guarracino.
Prior knowledge in the classification of biomedical data.
5th Int. Conf. on Soft Methods in Probability and Statistics (SMPS 2010), Combining Soft Computing and Statistical Methods in Data Analysis, in Advances in Intelligent and Soft Computing series, C. Borgelt et al eds., Springer, ISBN 978-3-642-14745-6 ISSN 1867-5662, pp. 1-8, 2010.
[Bibtex]
-
[Bibtex]
| [Matlab macros]
-
[Bibtex]
-
G. Attratto, D. Femiano, M.R. Guarracino. Strengthening I-ReGEC classifier.
First joint meeting of the Société Francophone de Classification and the Classification and Data Analysis Group of SIS,
Book of short papers, Edizioni Scientifiche Italiane, Napoli, ISBN 978-88-495-1656-2, June 2008, Pages 169-172.
[Bibtex]
-
[Bibtex]
-
M.R. Guarracino, D. Abbate, R. Prevete. Nonlinear knowledge in learning models, in proceedings of Workshop on Prior Conceptual Knowledge in Machine Learning and Knowledge Discovery, European Conference on Machine Learning, Warsaw, September 2007, Pages 29-40.
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
-
M. Carbillet, C. Vérinaud, M.R. Guarracino, L. Fini, O. Lardière, B. Le Roux, A. Pugliesi, B. Femenia, A. Riccardi, B. Anconelli, S. Correia, M. Bertero, and P. Boccacci. CAOS - a numerical simulation tool for astronomical adaptive optics (and beyond), SPIE Conference on Astronomical Telescopes and Instrumentation, Vol. 5490, 2004, Pages 637-648. ( Google Scholar)
-
[Bibtex]
-
M. Bertero, P. Bonetto, L. Carracciuolo, L. D'Amore, A. Formiconi, M.R. Guarracino, G. Laccetti, A. Murli and G. Oliva. MedIGrid: a Medical Imaging Application for Computational Grids. IPDPS 2003, IEEE Computer Society Press, Nice, April 2003, Page 252.2. ( Google Scholar)
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
-
[Bibtex]
|
technical reports |
-
M.R. Guarracino, On Classification Methods for Mathematical Models of Learning. Rapporto Tecnico 3.246.1572 del Gruppo di Ottimizzazione e Ricerca Operativa, Dipartimento di Matematica, Università degli Studi di Pisa, Febbraio 2005.
|
include ('footer.html') ?>
|